European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

WGs Meeting, Belgrade, 13 - 14 October 2015 organized by VINCA Institute and co-organized by Public Health Institute of Belgrade hosted by Faculty of Mechanical Engineering, University of Belgrade <u>Action Start date</u>: 16/05/2012 - <u>Action End date</u>: 30/04/2016 Year 4: 1 July 2015 - 30 April 2016 (*Ongoing Action*)

AIR QUALITY MODELING WITH BULGARIAN WRF-CMAQ SYSTEM OVER EUROPE - 03, PM AND METEOROLOGY

- Presenter's Name: prof. Dimiter Syrakov
- Function in the Action: WG3.2 member
- National Institute of Meteorology and Hydrology
- 66, Tzarigradsko shaussee Bulvd.
- Sofia 1784, BULGARIA

Motivation and Outline

WRF-CMAQ: backbone of the BG national "Chemistry weather forecast system" <u>http://www.meteo.bg/en/cw</u>

- 1. Model intercomparison -AQMEII phase 2
- 2. WRF CMAQ set up
- 3. O3, PM10 operational model evaluation
- 4. Wind10, TEMP2, PBL
- 5. Summary and next steps

- Air Quality Model Evaluation International Initiative (AQMEII) – simulations over EU and NA
- 13 groups in EU and 4 in NA, 1 year 2010
- Focus on on-line coupled MET- CHEM models
- NIMH's WRF-CMAQ system is **uncoupled**
- Huge amount of observational data (surface, profiles, flights)
- on-line model evaluation platform ENSEMBLE (EC-JRC)

First results in Special Issue Atm Env 115 (2015)

Set up: WRF – CMAQ (BG2) - 1/2

• WRF model version 3.3

Driven by NCEP/GFS (1°), - Analysis nudging 27 vertical levels , dx = 25 km

Physics Options	Parameterization
Microphysics	WSM6 scheme
Cumulus param	Kain-Fritsch scheme
PBL	YSU scheme
Longwave Radiation	RRTM scheme
Shortwave Radiation	Dudhia scheme
Land Surface Model	NOAH LSM scheme

Set up: WRF – CMAQ (BG2) - 2/2

CMAQ v. 4.6

CB4 mechanism

14 vertical levels (7 below 1000 m)

<u>Chemical Boundary Conditions:</u> MACC reanalysis

Emissions:

Inventories – TNO-MACC inventory for 2009
 dx~7×8 км) – common for all groups

• Emission processing (e.g. disaggegation) –by individual groups (NIMH)

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Operational model evaluation

- rural surface stations bellow 1000 m
- Data availability > 75%
- 2 sub-regions

Number of stations (AIRBASE, EMEP): O3 hourly : 100 148 PM10daily: 46 129

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

O3 (µg/m3) time series

EU1: MEAN OBS/MOD 54.7 / 60.4 NMB 11% FA2 83% PCC 0.79

AUG – overprediction by 25% DEC – underprediction by 3%

EU2: MEAN OBS/MOD 61.5 / 64.1 NMB 4% FA2 81% PCC 0.57

AUG – overprediction by 21% DEC – underprediction by 19%

COUPLED MODELS (*Im et al, 2015*) EU wide : NMB: - 8% , PCC: 0.86

O3 (ug/m3) diurnal cycle

- Timing of DMAX
- Night-time overestimation

Possible reasons for O3 overestimation:

- Emissions
- Dry deposition velocity underestimation
- NO titration by ozone overestimation
- PBL physics

Sensitivity to NOx emissions (Syrakov et al, Harmo16) – increase of NOx by 30% has led to only 7-8% decrease in surface ozone

-OBS -MOD

Profiles of O3 Mean Bias (Mod-Obs)

Ozonesondes 3 sites: STN099 (DE), STN242 (CZ), STN156 (CH)

O3 – overestimated between 500-2000 m

O3 dry deposition

Case 0311-002 - Box and Whisker plot - 03 Dry deposition (Monthly integrated) in kg km-2 Data time window: from 2010-01 to 2010-12 UTC

AQMEII2 EU Grid Depositions Start: 2010-01-01 00:00 UTC

110

med

mm

-O3 dry deposition of BG2 is smaller than other **AQMEII** models

Created by user dsyrakov on 2015-09-06 11:45:58 UTC

Created by user dsyrakov on 2015-08-24 12:16:08 UTC

Case 0316-001 - Time overlap - NO Concentration (0 m agl) in ug m-3

Models maximum: 5.54E+01

Data time window: from 2010-01-10 01:00 to 2011-01-01 00:00 UTC - Pool (AVG): EU1NO

PM10 monthly variation

EU1: MEAN OBS/MOD 20.9 / 11.9 NMB - 43.3% FA2 63% PCC 0.68

EU1 & EU2 : underestimation especially in winter

- OBS - MOD - MOD MEAN Im et al 2015

EU2: MEAN OBS/MOD 20.7 / 10.9

FA2	56%
PCC	0.52

PCC is within values by coupled models: EU1 (0.4-0.9) EU2 (0.2-0.9) (Im et al, 2015)

PM10 (µg/m⁻³) 2010

-OBS -MOD

Box and Whisker Plots show smaller variability in modeled PM10

TEMP2

-

- COLD BIAS 0.5K (EU1), 1K(EU2), similar to range of coupled models (Brunner et al. 2015)
 - WRF underestimates especially night-time TEMP2 (in EU2 also afternoon)
- time shift of about 1 hour in morning rising temperature

10m - Wind speed (WS10)

diurnal variation WS10

- Seasonally : WS10 is overestimated by
 11% (annual) summer well
- Diurnal WS10 overestimated at all times of day, especially at night time,
- Might be due to YSU –scheme, (version earlier than 3.4.1.
- Results comparable to ModMean coupled models (Brunner et al, 2015)

Vertical profiles of MBIAS @STN099

Hohenspeissenberg, (DE) August – mean of 9 profiles - 05:00 UTC

LOWER LAYERS: O3 – overestimated TEMP – overestimated WIND – overestimated RH – overestimated

PBL height vs. Meas. from sounding sites from Brunner et al, 2015

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

PBL height vs. Meas. from sounding sites from Brunner et al, 2015

PBL diurnal variation in EU1 and EU2 for June-July-August "MEAS" = estimated by sounding data , Brunner et al., 2015

Conclusions

Preliminary operational evaluation:

- O3: better in EU1 than in EU2 night-time overestimation both near ground and in the PBL
- PM10 : better in EU1 than in EU2 underestimated in all seasons relatively good PCC values results similar to coupled models
- MET: T2 underestimated WS overestimated (not only at surface) RH – overestimated PBL – overestimation at night time

Further efforts needed for understanding weaknesses of WRF-CMAQ @ NIMH

ACKNOWLEDGEMENTS

Grant from National Science Fund (Договор №Д002-161/16.12.2008). Grant from National Science Fund (Договор № ДЦВП-02/1/29.12.2009). COST Actions ES0602, ES1004 and TD1505. 5thFP project BULAIR (Contract Nr. EVK2-CT-2002-80024). 6thFP Network of Excellence ACCENT (Contr. Nr. GOCE-CT-2002-500337). 6thFP Integrated Project QUANTIFY (Contract Nr. GOGE-003893). 7thFP project SEE-GRID-SCI (Contract Nr. FP7 –RI-211338). 7th FP project EGI-InSPIRE (Contract Nr. 261323). 7th FP project PASODOBLE (Contract Nr. 241557).

US EPA, NSEP, EMEP, TNO for providing free-of-charge models and data

Special thanks to ENSEMBLE team at EC-JRC and all AQMEII Community

